高考文科數(shù)學公式總結(jié)歸納

思而思學網(wǎng)

函數(shù)、導數(shù)

1、函數(shù)的單調(diào)性

(1)設x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函數(shù);

f(x1)f(x2)0f(x)在[a,b]上是減函數(shù).

(2)設函數(shù)yf(x)在某個區(qū)間內(nèi)可導,若f(x)0,則f(x)為增函數(shù);若f(x)0,則f(x)為減函數(shù).

2、函數(shù)的奇偶性

對于定義域內(nèi)任意的x,都有f(-x)=f(x),則f(x)是偶函數(shù);對于定義域內(nèi)任意的x,都有f(x)f(x),則f(x)是奇函數(shù)。奇函數(shù)的圖象關(guān)于原點對稱,偶函數(shù)的圖象關(guān)于y軸對稱。

解三角形公式:

正弦定理:a/sinA=b/sinB=c/sinC=2RR為三角形外接圓的半徑

余弦定理:a2=b2+c2-2bccosA

sin(A+B)=sinC

sin(A+B)=sinAcosB+sinBcosA

sin(A-B)=sinAcosB+sinBcosA

sin2A=2sinAcosA

cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2

tan2A=2tanA/[1-(tanA)2]

(sinA)2+(cosA)2=1

常用的誘導公式有以下幾組:

公式一:設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

公式二:設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

公式六:π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

熱門推薦

最新文章